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Natural selection designs some social behaviors to depend on
flexible learning processes, whereas others are relatively rigid
or reflexive. What determines the balance between these two
approaches? We offer a detailed case study in the context of a
two-player game with antisocial behavior and retaliatory punish-
ment. We show that each player in this game—a “thief” and a
“victim”—must balance two competing strategic interests. Flex-
ibility is valuable because it allows adaptive differentiation in
the face of diverse opponents. However, it is also risky because,
in competitive games, it can produce systematically suboptimal
behaviors. Using a combination of evolutionary analysis, rein-
forcement learning simulations, and behavioral experimentation,
we show that the resolution to this tension—and the adaptation
of social behavior in this game—hinges on the game’s learning
dynamics. Our findings clarify punishment’s adaptive basis, offer
a case study of the evolution of social preferences, and highlight
an important connection between natural selection and learning
in the resolution of social conflicts.

punishment | evolution | reinforcement learning | game theory |
commitment

Human social behavior is sometimes remarkably rigid, and
other times remarkably flexible. A key challenge for evo-

lutionary theory is to understand why. That is, when will natu-
ral selection favor “reflexive” social behaviors, and when will it
instead favor more flexible processes that guide social decision-
making by learning?

We investigate a case study of this problem that illuminates
some general principles of the evolution of social cognition.
Specifically, we model the dynamic between antisocial behavior
and retaliatory punishment in repeated relationships. Our goal
is to understand when natural selection will favor flexibility (e.g.,
“try stealing and see if you can get away with it”) versus rigidity
(“punish thieves no matter what”). We approach this question
through both a game-theoretic model of punishment and agent-
based simulations that allow for the evolution of the rewards
that guide learning. We demonstrate that the evolution of pun-
ishment depends on the learning dynamics of competing flexible
agents, and that this interaction between learning and evolution
can produce individuals with innate “social preferences,” such as
a taste for revenge (1–4).

The Evolution of Retaliatory Punishment
Individuals often punish those who harm them, even at a cost
to themselves (5, 6). The adaptive rationale of this behavior
seems clear in repeated or reputational interactions: Punishment
promises a long-run gain by deterring social partners from doing
future harm. This logic was classically formalized with a simple
two-party repeated game (5) (Fig. 1A). On each round, a thief
has the option to either steal from a victim (earning s and inflict-
ing a cost −s) or do nothing. In response, the victim may either
punish (paying a cost −c to inflict a cost −p) or do nothing. For-
mal analysis shows that “punish all theft/stop stealing from vic-
tims who punish” is evolutionarily stable. This model, and many
others that followed, offered a straightforward explanation for
retaliatory punishment in repeated/reputational interactions (7–
10). As a consequence, much attention has shifted to the puz-

zle of “altruistic” punishment in one-shot, anonymous settings
(11, 12).

Models of retaliatory punishment embody a peculiar assump-
tion, however: Thieves can flexibly adjust to different victim
types, but victims must commit to identical behaviors against
all thief types (Fig. 1B). The first element is uncontroversial: A
discerning thief will steal from victims who never punish (i.e.,
pushovers), while respecting the property of those who do. This
form of flexibility is sometimes also called “facultative adjust-
ment” (10) or “opportunism” (9). In fact, it is necessary for retal-
iatory punishment to be adaptive: Punishment only pays when
people adjust their behavior in response (5, 7, 10).

Our focus is the second element of this assumption. In con-
trast to thieves, it is typically assumed that victims are relatively
rigid—that is, unable to tailor punishment to different types of
opponents. In the classic model (5), whereas thieves can play
“steal from pushovers, don’t steal from retaliators,” victims can
only pick between two relatively rigid strategies: “always pun-
ish theft” or “never punish theft.” Similarly, while many mod-
els show that punishment can help maintain cooperation in pub-
lic goods settings, they typically assume that free-riders can play
flexible strategies (like “cooperate with retaliators, defect against
pushovers”), while victims of free-riding can only pick between
“always punish defection” or “never punish defection” (7–10).

What are the consequences of relaxing this assumption? In
theory, victims could profit from playing a flexible strategy. When
facing a thief who learns from punishment (i.e., a flexible oppo-
nent), the victim would punish theft. Facing a rigid thief who
cannot learn, however, the victim would abandon this costly and
ineffectual punishment. (The latter possibility is well understood
by parents who capitulate to incorrigible toddlers or towns that
accede to entrenched organized crime.)
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Fig. 1. (A) A round of the steal/punish game (5). s is the value of the stolen
good, c the cost of punishing, and p the cost of being punished. s, c> 0
and p> s. The game is repeated for N rounds. (B) Pure strategies in the
steal/punish game. Typical strategy spaces in models of retaliatory punish-
ment, depicted by the yellow area, produce the familiar equilibrium of rigid
punishment and flexible theft. Extending this strategy space to allow flexi-
ble victims reveals an inverted equilibrium: rigid theft and flexible punish-
ment. The direction of selection hinges on the outcome of flexible thief
against flexible victim: Whichever role tends to “back down” first evolves
rigidity to compensate. (See Fig. S1 for payoffs.)

We introduce this possibility by incorporating a symmetric,
role-neutral notion of flexibility into an evolutionary model of
retaliatory punishment. Using this model, we demonstrate that
there are two potential equilibria: the familiar equilibrium (in
which victims rigidly punish all theft and thieves flexibly learn
who to steal from) and an inverted equilibrium, in which thieves
rigidly steal and victims flexibly learn who to punish. In the
inverted equilibrium, thieves are incorrigible, and flexible vic-
tims cease punishing them when they learn that it is costly and
useless.

These two rival equilibria establish a formal framework in
which to investigate the adaptive underpinnings of flexible versus
rigid social cognition. Prior work has identified numerous bene-
fits of rigid “commitment” to behaviors like punishment (13–15).
For instance, when agents can honestly signal a commitment to
inflexibly punish in irrational settings (e.g., one-shot games), this
motivates opponents to desist from theft (14, 16). Building on
this tradition, we identify another strategic benefit of rigidity in
competitive repeated games: It can compensate for systematic
weaknesses in the learning mechanisms that enable flexibility.
Some opponent strategies can bias flexible agents to represent a
behavior as suboptimal, when, in fact, it would have been optimal
in the long run. For an important class of learning algorithms,
we show that flexible victims are more vulnerable to this weak-
ness than flexible thieves. This asymmetry can drive victims to
evolve rigid punishment—which, in the reward learning frame-
work, corresponds with an innate “taste” for retaliation (1–3).
We conclude by confirming a simple behavioral prediction of
the model: People playing the steal/punish game rigidly persist
in costly punishment, even when it appears ineffectual.

Model and Evolutionary Analysis
We begin by incorporating a role-neutral notion of flexibility
into the steal/punish game and analyzing its evolutionary implica-
tions. We define a strategy space that encompasses the two rival
equilibria described above (Fig. 1B), and determine the condi-
tions under which each strategy is evolutionarily stable (17) and
risk-dominant (18). We then support these static analyses by sim-
ulating the evolution of agents in a finite population under a wide

range of parameter values. All results point to the same conclu-
sion: Selection between the two equilibria hinges on the outcome
of a multiagent learning scenario, flexible thief versus flexible vic-
tim. The role with the greater difficulty in learning an optimal
strategy will evolve rigidity to compensate.

Strategy Space. In our model, random pairs of agents in a large,
well-mixed population play the steal/punish game for N rounds
(Fig. 1). Each agent inherits a strategy specifying its behavior
in the game. We consider three pure strategies for each role:
always, never, or flexibly steal (AS , NS , or FS , respectively) and
always, never, or flexibly punish theft (AP , NP , or FP , respec-
tively). The always/never strategies rigidly persist in their behav-
ior, even when it is suboptimal against the current partner.

In contrast, flexible agents adopt the behavior of whichever
inflexible strategy is optimal against the current partner. An
agent playing FS never steals (i.e., adopts the inflexible strat-
egy NS ) when facing an opponent who punishes (i.e., AP), and
always steals when facing an opponent who doesn’t (i.e., NP). An
agent playing FP never punishes when facing AS , and is indiffer-
ent when facing NS (in this case, both options—always or never
punish theft—yield zero payoff).

The critical case is when two flexible agents meet (FS versus
FP). Here, we assume there are two stable outcomes: Either the
thief learns to steal and the victim gives up on punishing (i.e.,
thief adopts AS and victim NP), or the victim learns to punish
and the thief gives up on stealing (thief adopts NS and victim
AP). In other words, we assume that the flexible agents will fall
into one of the two weak Nash equilibria among the inflexible
strategies: AS /NP or NS /AP . We define θ as the probability of
the former (the thief learns to steal), and 1− θ as the probability
of the latter (the victim learns to punish theft).

This case captures the vulnerability of flexible strategies. When
flexible victims learn not to punish flexible thieves (high θ), they
abandon a behavior that would be optimal in the long run and
are disadvantaged. In contrast, if flexible thieves learn not to
steal from flexible victims (low θ), then the thieves are disadvan-
taged. θ thus captures the relative vulnerability of flexible vic-
tims/thieves to learning suboptimal behavior. We find that θ is a
critical determinant of the evolutionary outcome.

Population Diversity. Our aim is to identify the strategic benefits
of rigid and flexible strategies. The benefit of flexibility is the abil-
ity to adjust to diverse opponents. In the static equilibrium analy-
sis we use here, such diversity between individuals is represented
by a single individual playing a mixed strategy [e.g., a popula-
tion of 75% AS, 25% NS is represented by the strategy “play AS
with probability 3

4
and NS with 1

4
” (19)]. However, in games like

ours with asymmetric roles, mixed strategies are always erased
by selection (20). (See SI Text for proof.) Thus, the population
has no permanent diversity, and there is no stable benefit to flex-
ibility. If flexible strategies cannot be stable, neither can punish-
ment: Punishing is only useful if opponents flexibly modify their
behavior in response.

Consequently, past work implicitly assumed that ancestral
populations were permanently diverse (5), or analyzed more
complex evolutionary dynamics with mutation rates that ensured
diversity (9). Our approach is to model diversity explicitly within
a simpler, static analytic framework. We define an “epsilon
game” (a second-order game parameterized by a constant ε),
where each pure strategy is a probabilistic mixture of the pure
strategies in the basic game. Specifically, if s is a pure strategy
in the basic game (a “basic” strategy), then the corresponding
pure strategy in the epsilon game (an “epsilon” strategy) is sε,
which plays s with probability 1−ε and the other two role-specific
strategies each with probability ε

2
. For example, a thief playing

FSε would play FS with probability 1 − ε, and AS or NS each
with probability ε

2
. By combining these epsilon strategies, agents

can play any mixture of the basic strategies AS , NS , etc., but
the probability of a basic strategy being played never falls below
ε
2

, where ε > 0. This approach allows us to model the effects of

2 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1704032114 Morris et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1704032114/-/DCSupplemental/pnas.201704032SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1704032114/-/DCSupplemental/pnas.201704032SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/cgi/doi/10.1073/pnas.1704032114


PS
YC

H
O

LO
G

IC
A

L
A

N
D

CO
G

N
IT

IV
E

SC
IE

N
CE

S

population diversity within a simple static framework, motivating
the evolution of flexible strategies.

Evolutionarily Stable Strategy Analysis. Each agent inherits both
a thief and victim epsilon strategy, plays both roles equally
throughout its life, and reproduces in proportion to its accumu-
lated payoffs. We write an agent’s strategy as (thief strategy, victim
strategy). To explore the outcome of selection, we use the static
solution concept of an evolutionarily stable strategy (ESS). Intu-
itively, a strategy is an ESS if, once it has taken over the popula-
tion, it cannot be invaded by isolated appearances of other strate-
gies (“mutations”) (17). Using this rule, we derive the conditions
of evolutionary stability for the two potential equilibria: rigid
punishment/flexible theft and rigid theft/flexible punishment. In
the epsilon game, these outcomes are represented by the strate-
gies (FSε,APε) and (ASε,FPε) (Fig. S2).

The conditions involve four parameters: θ (a flexible victim’s
relative vulnerability), ε (percent of the population that is per-
manently diverse), the ratio of c to s , and the ratio of p to s .
We denote rc:s = c

s
and rp:s = p

s
− 1 (the −1 is convenient for

mathematical reasons). For exposition, assume that ε = 0.05.
The resulting stability conditions are shown in Fig. 2.

Roughly, when θ is high—i.e., flexible victims are relatively more
vulnerable—only the familiar (FSε, APε) pair is stable. When θ
is low—flexible thieves are more vulnerable—only the inverted
(ASε, FPε) pair is stable. [The conditions with arbitrary ε are
derived in SI Text and conform to the same pattern (Fig. S3).]

In other words, rigid punishment/flexible theft is the equilib-
rium strategy specifically when flexible victims find it difficult to
learn to punish flexible thieves. This result holds as long as pun-
ishment is not exceedingly strong (with our default parameters,
no more than 38 times the value of the stolen good; see SI Text
for robustness across parameter settings).

Risk-Dominance Analysis. When θ is moderate, both equilibria are
stable (middle region in Fig. 2). To analyze this case, we use
a standard criterion for selecting between two equilibria: “risk-
dominance” (18, 21). Roughly, one equilibrium risk-dominates
the other if it has a larger basin of attraction. The condition
for risk-dominance here is simple: When both outcomes are sta-
ble, rigid punishment is risk-dominant if and only if θ > rc:s

rc:s+rp:s
.

Otherwise, rigid theft is risk-dominant.

Moran Process Simulations. Next, we simulate the system’s evolu-
tion with a Moran process (22). This tests the robustness of our
result to a relaxation of assumptions. The simulated agents live
in a small population and use strategies from an extended space
that includes all four “reactive” strategies [where a player’s move
can be conditioned on her opponent’s last move (23)] and a flexi-
ble strategy (Fig. S4). Each generation, all agents play each other,

Fig. 2. Stability conditions in the steal/punish game (assuming ε= 0.05,
rp:s, rc:s >

1
38 , and rp:s + rc:s < 38). When θ is high, only the familiar (FSε, APε)

is stable (blue-green region). When θ is low, only the inverted (ASε, FPε)
is stable (orange region). In the middle region, both are stable, and risk-
dominance is determined by the boundary [(FSε, APε) to the right and
(ASε, FPε) to the left]. The evolution of rigid punishment depends on the
relative vulnerability of flexible strategies in each role (see SI Text).

one agent “dies” at random, and its replacement inherits a new
strategy with probability proportional to the strategies’ accumu-
lated payoff. The process repeats many times.

We vary θ from 0 to 1, sampling the other parameters from a
large space (Table S1). As an alternate method of incorporating
population diversity, we include stochastic mutation. The result
confirms our formal analysis (Fig. 3): As flexible victims become
more vulnerable, agents become more likely to evolve to rigidly
punish. [This finding holds for a broad range of mutation rates
and selection intensities (Fig. S5).]

How Learning Dynamics Determine Relative Vulnerability
Our model suggests that, for a broad parameter space, the evo-
lution of punishment in repeated relationships hinges on the
outcome of a multiagent learning scenario: a flexible thief (FS )
playing against a flexible victim (FP). In this competitive setting,
flexible strategies have a vulnerability. They may learn to give up
on a behavior (i.e., punishment or theft) that would have been
optimal in the long run. Whichever role is more vulnerable in
this scenario will evolve rigidity. We captured the outcome of this
multiagent learning process with a parameter θ. Next, we seek a
more principled way to predict the outcome of this process by
considering a plausible cognitive model of behavioral flexibility.

Flexible behavioral control in humans is often accomplished
via reward learning, including in social contexts (3, 24). To model
this, we adopt the reinforcement-learning (RL) framework (25),
a formalization of reward learning widely used in computer sci-
ence, neuroscience, and psychology. In brief, RL agents choose
actions by estimating their value: the sum of their expected future
rewards. If agents experience rewards equal to the payoffs of
the game, then they learn to choose payoff-maximizing actions
against diverse opponents (26–28). We focus on a popular class
of RL algorithms (“model-free”) that directly estimate the value
of actions based on historical returns (Materials and Methods).
Using these algorithms, we aim to identify factors influencing the
relative vulnerability of flexible strategies in each role. In other
words, we ask: What happens when a reward-learning thief meets
a reward-learning victim?

Learning Dynamics for RL Agents. We perform Monte Carlo sim-
ulations of two RL agents playing each other in the steal/punish
game, with payoffs as the reward function and randomly sam-
pled s , c, and p (Table S1). [We use the popular algorithm
Q-learning (29) with eight internal states. See Materials and
Methods for details.] In 72% of games, the thief learns to steal
and the victim to not punish; in the remaining 28% of games,
the victim learns to punish theft and the thief to stop stealing. In
other words, under these conditions, θ= 0.72.

Why are victims more vulnerable? Across games, variability
in three parameters all strongly predict the outcome: As s and
c increase, the victim becomes less likely to learn to punish
(i.e., becomes more vulnerable), and as p increases, the victim
becomes more likely to learn to punish (i.e., the thief becomes
more vulnerable; logistic regression, ps< 0.001).

To illustrate how these parameters influence the learning
dynamics, we highlight the effect of just one: the cost of punish-
ing c. Intuitively, it is hard to learn that punishing has long-term
value because it carries short-term costs. There is not a compara-
ble obstacle to learning the long-term value of theft: Indeed, the
most immediate consequences of theft are positive (you obtain
the stolen good). Thus, when a reward-learning victim meets
a reward-learning thief, the victim is biased against learning to
punish, while the thief is biased toward learning to steal. All
else being equal, the most probable outcome of these learning
dynamics is persistent theft and no punishment (i.e., high θ).

To demonstrate this effect, we rerun the RL simulations above
while varying c, and holding the other parameters constant. RL
victims are more vulnerable when punishment costs are high, but
not when those costs are negligible (Fig. 4A). [This result holds
as long as s is low; otherwise, flexible thieves have too strong a
learning advantage, and θ is always high (SI Text).]
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Fig. 3. The simulated evolution of strategies in the steal/punish game for
different values of θ (see Materials and Methods). As flexible victims become
more vulnerable, the population is more likely to converge to the familiar
equilibrium with rigid punishment and flexible theft.

This clarifies why flexibility bears a strategic risk, beyond its
previously identified relation to signaling (14). Although RL
algorithms are guaranteed to converge to an optimal policy in
stationary environments (25), there is no such blanket guaran-
tee for competitive multiagent settings. In the steal/punish game,
each learning agents is in a “race” to discover the policy that
establishes their preferred behavioral equilibrium before their
opponent does. Punishment’s initial costs can bias learning away
from its preferred equilibrium, exposing a systematic strategic
risk of flexibility for this role. (See SI Text for details.)

The Evolution of Social Rewards. In our evolutionary analysis, we
show that when flexible victims fail to learn to punish against flex-
ible thieves (i.e., θ is high), victims evolve rigid punishment to
compensate. We also show that when flexibility is accomplished
via reward learning, punishment’s short-term cost causes flexible
victims to fail to learn to punish against flexible thieves. Combin-
ing these results, punishment’s cost should bias selection toward
the equilibrium with rigid punishment, which will evolve to com-
pensate for the disadvantage of flexible punishment.

We test this prediction by embedding the RL agents described
above in an evolutionary agent-based simulation. To model the
flexible strategies (FS and FP), we again use Q-learning and set
rewards equal to the game’s payoffs.

To model the rigid strategies (AS , AP , NS , and NP), we use
Q-learning agents with additional rewards conditioned on per-
forming certain actions (30). These agents find stealing or pun-
ishing theft intrinsically rewarding or aversive, over and above
the objective fitness payoffs. A thief who finds stealing sufficiently
intrinsically aversive would never steal; a victim who finds punish-
ing sufficiently intrinsically rewarding would rigidly punish theft;
etc. In other words, agents can evolve social rewards—strong
intrinsic rewards for social behaviors like retribution that can
dominate their other costs. This technique incorporates a notion
of rigidity into the RL framework, and affords a natural computa-
tional interpretation of economists’ notion of social preferences
as tastes for retribution, fairness, and so forth (3).

An agent’s genotype, then, comprised two values subject to
mutation: an intrinsic bias for or against theft and an intrinsic
bias for or against punishing theft [denoted “(theft bias, punish-
theft bias)”]. For example, an agent with genotype (0,+) would
play like (FS ,AP). We simulate the evolution of these agents
with the same Moran process as before, with reproductive suc-
cess proportional to accumulated payoff and stochastic mutation
ensuring permanent population diversity (Materials and Meth-
ods). To elucidate the effect of punishment’s cost on selection,
we vary c while holding the other payoffs constant.

The results support our analysis (Fig. 4B). When punishment
is costly (and thus flexible victims are more vulnerable), agents
evolve an intrinsic hedonic bias for punishing theft. However,
when the cost is negligible (and thus flexible thieves are more
vulnerable), agents evolve an intrinsic bias for stealing, not pun-
ishing. Ironically, then, for reward learning agents, selection can
favor rigid punishment precisely when it is costly.

Of course, other learning algorithms exist that might perform
differently in this game. Because reward learning is a key basis
for much human social behavior (3, 24), it is a particularly inter-
esting and important case study.

Rigid Punishment in Humans
Our analyses suggest that, when punishment carries a short-term
cost, evolution will favor the familiar equilibrium of rigid punish-
ment and flexible theft. In the context of RL, people will find
punishing, but not stealing, intrinsically rewarding. Consistent
with these results, people seem to find punishment rewarding
(1, 2, 31) and rigidly punish in irrational settings (32, 33). Past
work has not, however, explicitly tested for a behavioral asym-
metry in the flexibility of punishment and theft. We conclude by
demonstrating this asymmetry.

Human participants from Mechanical Turk are endowed with
money and play repeated steal/punish games against real oppo-
nents (Fig. 5A). Participants are randomly assigned to the thief or
victim role. To facilitate the procedure, one player in each game
secretly precommits to one of several strategy choices, includ-
ing two crucial options: rigidly steal and rigidly punish theft.
These participants are matched with freely acting participants,
who choose their actions sequentially with full knowledge of the
opponent’s prior actions. We focus on the behavior of the freely
acting participant when facing rigid opponents.

We designed the payoffs such that, absent an asymmetric
bias, participants in both roles would show identical learning
curves: The thief would learn to stop stealing, and the victim
to stop punishing, at similar rates. (See Materials and Meth-
ods for details.) Yet people persist much longer in punishing
than stealing (Fig. 5B). We fit a mixed-effects model, regress-
ing participant choices on their role, the round number, and the
interaction between role and round. The interaction between
role and round is significant (likelihood ratio test, χ2(1)= 24.3,
P < 0.001; η2G =0.03, 95% CI = [0.024, 0.24]). Consistent with
our predictions, in repeated games against inflexible opponents,
thieves act relatively flexibly and victims act relatively rigidly.
[This result holds for a variety of payoff settings (SI Text).]

Although consistent with an asymmetry in the intrinsic reward
of punishment versus theft, this result has several alternative

Fig. 4. (A) Outcome of two RL agents in the steal/punish game. As the cost
of punishing increases, victims become less likely to learn to punish (i.e.,
become relatively more vulnerable). (B) We embedded the RL agents in an
evolutionary simulation, allowing selection for hedonic biases for or against
stealing/punishing. As the cost of punishing increases, selection increasingly
favors an intrinsic hedonic bias for punishing (rather than stealing) (see
Materials and Methods). Prob., probability.
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explanations. People may have learned different instrumental
values for theft/punishment from experience, or different expec-
tations about the pliability of thieves versus victims. To adju-
dicate between these explanations, future work should investi-
gate the neural and psychological mechanisms that underlie this
asymmetry, and test for the asymmetry in children and across
cultures.

Discussion
Prior models of punishment assume that only “thieves” (harm-
doers or free-riders), and not victims, can flexibly adapt their
behavior to different opponent types (5, 7, 10). By relaxing this
assumption, we show that there are two potential equilibria:
one with rigid punishment/flexible theft and another with rigid
theft/flexible punishment. Evolutionary outcomes hinge on the
multiagent learning dynamics when two flexible players interact.
Modeling this in the RL framework (25), we find that punish-
ment’s initial cost can make flexible victims more vulnerable to
suboptimal learning than flexible thieves. This asymmetry favors
the evolution of inflexible punishment—in the RL framework, an
innate taste for retribution.

Our model makes three significant contributions. First, it
helps explain the relatively inflexible nature of human punish-
ment. People clearly exhibit some flexibility in their punishment
choices, often tailoring punishment to minimize the risk of retal-
iation (e.g., they punish a coworker, but not a mob boss). How-
ever, people are remarkably insensitive to the contextual poten-
tial for effective deterrence (6, 32)—punishing, for instance, in
one-shot anonymous settings (33). We find that people also per-
sist in punishment, but not theft, for several rounds of a repeated
game against opponents who never learn.

Why do people possess a deterrence mechanism (punishment)
that persists in contexts where it is ineffectual? Some prior
analyses have posited that inflexibility is strategically beneficial
because it signals your commitment to punish even in “irrational”
contexts (e.g., one-shot interactions) (13–15).

We identify an additional strategic benefit of inflexibility:
By committing to punish in “rational” contexts, it prevents
proximate learning mechanisms from converging on suboptimal
behavior in repeated games. Moreover, our model explains why
evolution would commit people to punishment, but not theft:
Punishment’s immediate cost makes flexible victims asymmetri-
cally vulnerable to this weakness. This result extends our under-
standing of the adaptive underpinnings of social inflexibility. It
also complements the prior suggestion that inflexibility can com-
pensate for weakness in planning due to temporal discounting [as
opposed to learning, as we investigate here (14)].

Second, our model highlights an ironic (but perhaps common)
interaction between learning and evolution: A social role that
tends to “lose” in the learning dynamic may consequently “win” in
the evolutionarydynamic. For instance, whenvictims arerelatively
handicapped in learning the benefits of punishment, they evolve a
rigid punishment strategy that ultimately achieves their preferred
in-game pattern: no theft. This parallels prior research demon-

A B

Fig. 5. (A) Example round of the behavioral experiment. (B) Rate of
theft/punishment against rigid opponents. Thieves learn to stop stealing,
but victims do not learn to stop punishing theft. (Bars are ± SEM.)

strating that, in mutualisms between two species, the species which
is slower to adapt ends up receiving more benefits in the long run,
because it is more committed to its preferred outcome (34). In
both cases, relative weakness at a shorter timescale fosters rela-
tive strength at a longer timescale (35).

Third, our work is a step toward reconciling proximate and
ultimate models of social behaviors like punishment. A wealth of
evidence suggests that punishment decisions are guided by sys-
tems of value and reward. People often report hedonic satisfac-
tion from punishing (31) (i.e., “revenge is sweet”), and punish-
ing wrongdoers is associated with activation in the striatum (2)
and orbitofrontal cortex (1, 36), brain regions central to reward-
based decision-making. The same is true for fairness, coopera-
tion, and other social behaviors, suggesting that people have a
suite of evolved tastes that guide their social decisions (3, 24).

Evolutionary models, however, typically rely on abstracted ver-
sions of these behaviors, and rarely incorporate details about
proximate mechanisms (37); they model “eats apples,” not “loves
fructose.” By embedding RL agents in an evolutionary model, we
attempt to bridge this gap. Our model offers a precise account
of how and why evolution would make punishment intrinsically
rewarding. This basic approach can be used to predict other social
behaviors that people will find rewarding and to explain why.

Our analysis has several limitations. People are relatively rigid
when punishing, but they still exhibit some flexibility; our model
does not explain when or how this occurs. Our model does
not allow agents to abstain from future interactions (38) or to
counterpunish (4). Our formal evolutionary analysis uses a static
framework, which is only an approximation for more accurate
dynamic models. Finally, we interrogate one plausible reward-
learning algorithm, but learning comes in many varieties. Future
work must fill these gaps.

Despite these limitations, our case study of punishment high-
lights the utility of evolutionary models defined over plausible
psychological mechanisms (37, 39), a research path promising
fruitful insight into the origins of social behavior.

Materials and Methods
All code and data can be found at https://github.com/adammmorris/rigid-
punishment. See SI Text for ESS and risk-dominance calculations.

Moran Simulations. To simulate the evolution of this system, we use a Moran
process with selection and mutation. A population of K agents evolves over
103 generations. Each agent Ai inherits both a thief and victim strategy (see
SI Text for the expanded strategy space), plays each other agent as both
thief and victim, and receives a fitness score fi equal to its average payoff.
Then, one agent dies at random, and another agent is chosen to reproduce

according to a softmax function: P(Ai) = ewfi
/∑K

j=1 ewfj , where w con-

trols selection intensity. We also include a mutation rate µ. When an agent
reproduces with probability 1 − µ, it passes on its strategy pair, and with
probability µ, it passes on a random different strategy pair. (This models a
death–birth process with exponential payoff to fitness mapping.)

We vary θ from 0 to 1 and run 100 simulations for each value. We classify
each simulation as “converging” to a strategy when, averaged across all
generations past 1,000,>1−µ−0.1 of the population inherit that strategy.
(If no strategy meets that criterion, we classify the simulation as having no
equilibrium.) See SI Text for the parameters we use, along with a detailed
analysis of how the results vary with different parameter values. Notably,
the results are robust to variation in w and µ (Fig. S5).

RL Simulations. We adopt the RL framework to model the multiagent learn-
ing scenario of flexible thief versus flexible victim. The steal/punish game
can be conceptualized as a Markov decision process (MDP), with a set of
states S that agents can be in (e.g., “I was punished last turn”), a set of
actions As each agent can take in each state (e.g., steal or do nothing), a
reward function that maps state–action pairs onto payoffs, and a transition
function between states. RL algorithms learn to choose the behaviors in a
MDP that maximize their total reward and can be used as a model of learn-
ing in games like steal/punish (28).

Specifically, we take Q-learning as our model of learning (29). In
Q-learning, the agent estimates the long-term expected value of each action
a in each state s, Q(s, a). When a game starts, these Q-values are initialized
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to zero. At each time step, the agent selects an action a from state s based
on its current Q-value estimates (using a softmax function with parameter
β) and then updates those estimates according to:

Q(s, a)← Q(s, a) + α(r + γ max
a′∈As′

Q(s′, a′)− Q(s, a))

where α is a learning rate, γ is a discount rate, r is the observed reward, and
s′ is the subsequent state.

The learning agent must represent what state of the game it is in.
Following prior work (28), our agents keep track of the last two moves.
For instance, one state might be, “On the last two moves, I stole and
was punished.” A Q-learner reacts to its partner’s type by estimating
the value of being in the states following its actions. For example, if a
thief is facing a victim who always punishes, then it will learn a negative value
for the state following stealing. This allows a Q-learner to mold its behavior
to different opponents without building an explicit model of the opponent’s
behavior (hence its designation as model-free RL).

First, we simulate 10,000 Q-learning agents playing each other in the
steal/punish game, randomly sampling s, c, and p from the distributions
given in Tables S1 and S2. For each simulation, we analyze all turns past
1,000 and categorize it as “punisher exploited” if the thief stole and the
victim refrained from punishing on>95% of turns, and as “thief exploited”
if the thief refrained from stealing on >95% of turns. Then, we rerun the
simulations, varying c from 0.1 to 10 while fixing s = 5, p = 15 (Fig. 4A).
[We choose these values for s and p because they highlight the illustrative
effect that c can have on punishment’s learning dynamics. However, in other
ranges, s and p can drown out the effect of c (SI Text).]

Finally, we embed the RL agents in an evolutionary simulation where
agents have a heritable genotype (theft bias, punish-theft bias). As a base-
line, the reward an agent receives for a behavior is equal to the behav-
ior’s payoff, equivalent to its fitness consequences. A nonzero bias alters the
agent’s reward function: An agent with a steal bias of +2, e.g., would expe-
rience an additional 2 units of reward upon stealing. This extra reward only
affects the agent’s experience during learning, not its fitness.

There are three possible steal biases and punishing biases (correspond-
ing to the three thief and victim strategies in the evolutionary analysis). The
numerical magnitude of each bias is chosen as the smallest integer necessary
to guarantee the appropriate behavior (SI Text). We simulate the evolution

of these agents with the same Moran process as above. To make the simu-
lations tractable, we first cache the results of each genotype playing each
other genotype in 100 full games. Then, in each generation, we sample one
of those results for each genotype–genotype match.

We again vary c from 0.1 to 10 (with s = 5 and p = 15), run 100 Moran
simulations for each value, and record the percentage in which agents
evolve an intrinsic reward for stealing or punishing theft (using the conver-
gence criterion described above; Fig. 4B). In SI Text, we describe the assump-
tions, design, and results of these simulations in more detail. All results
are robust to variation in parameters (Fig. S6). We also describe an analy-
sis which suggests that the results are due to the effect of c on the learning
dynamics, not the change in the payoffs themselves.

Behavioral Experiment. One hundred participants were recruited on Ama-
zon Mechanical Turk. All gave informed consent, and the study was
approved by Harvard’s Committee on the Use of Human Subjects. Each
participant plays one focal game against an opponent who always steals/
punishes (as either thief or victim) and two background games against the
other opponent types (one as thief, one as victim). Game order is varied
between participants and controlled for in the analysis. The focal game lasts
20 rounds; the background games last a random number of rounds, chosen
uniformly between 10 and 20. Participants do not know the game lengths.
In each round, participants are presented with a choice of two (neutrally
labeled) actions: steal (+2 cents to you and −2 to partner) or do nothing
(0 to both) when thief, and punish (−1 cent to you and −3 to partner) or
do nothing when victim. They are then informed of their partner’s decision.
(When playing as victim, participants are told whether their partner stole
before deciding whether to punish.)

The payoffs of s = 2, c = 1, p = 3 present identical pecuniary incentives
to thieves and victims: Compared with the alternative of doing nothing,
thieves receive a net −1 cent for stealing, and victims −1 cent for punishing
(when facing opponents who rigidly punish theft or steal). Thus, without
some asymmetric bias, people should show identical learning curves in the
two roles. [The result is robust to variation in payoffs (Fig. S7).]
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1. Evolutionary Analysis
Our evolutionary analysis has three complementary parts.
First, we derive the conditions under which the two proposed
equilibria—flexible theft/rigid punishment and rigid theft/flexible
punishment—are ESSs in the steal/punish game. Second, when
they are both ESSs, we derive the conditions under which one
risk-dominates the other. Third, we simulate the evolutionary
dynamics in a finite population using a Moran process.

Each analysis requires a subtly different set of assumptions.
Thus, we apply each analysis to a subtly different version of the
steal/punish game. This is a weakness of our approach, because
we do not offer one exact, consistent model of antisocial behav-
ior and retaliatory punishment. However, it is also a strength.
The different versions of the game embody the same core con-
cepts, while differing in their technical assumptions. By applying
different analyses to different versions of the game, we demon-
strate that our qualitative result is robust to variations in those
assumptions.

We label the three different versions of the game: the epsilon,
2× 2, and expanded games. The ESS analysis applies to the
epsilon game, risk-dominance to the 2× 2 game, and Moran sim-
ulations to the expanded game.

1.1. Deriving the ESS Conditions.
Basic Game. All variants of the game stem from the basic
game. In the basic game, agents play rounds of the sequential
steal/punish game (Fig. 1A) as either the “thief“ or “victim.”
The game is characterized by five parameters: N , the number
of rounds; s , the value of the stolen good; c, the cost of pun-
ishing; p, the cost of being punished; and θ, the probability that,
when a flexible thief faces a flexible victim, the thief learns to
steal (and the victim doesn’t learn to punish). All parameters
are strictly positive real numbers (c and p represent the absolute
value of their costs), θ∈ [0, 1], and p> s . (If p≤ s , punishment is
too weak to deter theft and can never evolve.)

An agent’s strategy defines its actions in all possible states of
the game. An agent plays as both thief and victim throughout its
lifetime, and we assume that the two experiences are indepen-
dent. Therefore, a complete strategy is characterized by the pair
(thief strategy, victim strategy). This approach allows a game with
asymmetric roles (thief and victim) to be technically symmetric
across agents, which in turn allows us to apply the ESS concept
(20). It also cleaves closer to actual ancestral conditions: People
likely had the opportunity to both steal and punish throughout
their lives.

Let τ = {AS ,NS ,FS} be the set of pure thief strategies, and
φ= {AP ,NP ,FP} the set of pure victim strategies. Their behav-
ior is described in the main text. When thief strategy T ∈ τ
faces victim strategy V ∈φ, they receive payoffs πT (V ) and
πV (T ), respectively (Fig. S1). When an agent with strategy
pair (T1,V1) faces another agent with strategy pair (T2,V2),
they receive π(T1,V1)(T2,V2) and π(T2,V2)(T1,V1), respectively.
Technically, a full description of our game would specify payoffs
for every strategy pair facing every other strategy pair (a symmet-
ric 9× 9 matrix). However, since thief and punisher strategies
only interact with each other, and an agent’s rounds as a thief are
independent of her rounds as a punisher, the payoffs for strategy
pairs are simply additive. Thus, π(T1,V1)(T2,V2)=πT1(V2)+
πV1(T2), and we can represent the agent payoffs (symmet-
ric 9× 9 matrix) with the simpler role payoffs (asymmet-
ric 3× 3 matrix) in Fig. S1. [For example, when the strat-

egy pair (AS ,NP) faces (NS ,FP), it receives πAS (FP) +
πNP (NS)=Ns + 0=Ns .]

An important note: We assume that the time it takes for a flexi-
ble agent to learn which strategy to adopt is negligible compared
with the length of the game, and thus omit the learning period
from the payoffs of FS /FP . This omission allows us to focus on
the strategic consequences of flexibility.
Mixed Strategies Cannot Be Stable in the Basic Game. As de-
scribed in the main text, an essential goal of our analysis is to
model the costs/benefits of flexibility for each role, and to under-
stand how this tradeoff influences the evolution of punishment.
The benefit of flexible strategies is that they can mold their
behavior to fit diverse opponents. In ESS analyses, such diver-
sity in opponents is captured by mixed strategies. However, in
games with asymmetric roles, mixed strategies cannot survive in
equilibrium (20).

To see this, consider the definition of an ESS. In our basic game,
a strategy pair (T ,V )∈ τ ×φ is an ESS if and only if (iff), for all
(T ′,V ′) 6=(T ,V ),

π(T ,V )(T ,V ) > π(T ′,V ′)(T ,V ), or [S1]

π(T ,V )(T ,V ) = π(T ′,V ′)(T ,V ) and π(T ,V )(T
′,V ′)

> π(T ′,V ′)(T
′,V ′)

In other words, a strategy is an ESS if it performs better against
itself than any alternative strategy does against it; or, if there
is an alternative strategy which performs equally well against it,
then it performs better against the alternative strategy than the
alternative does against itself. These conditions guarantee that,
in a large, well-mixed population, an ESS that has taken over
the population cannot be invaded by isolated mutations (17).
The first condition guarantees that mutants cannot spread; the
second condition guarantees that, if a mutant does (neutrally)
spread, the ESS will beat it back. [The ESS concept has been suc-
cessfully applied to explain many features of human and animal
social behavior, and is intimately linked to the stability criteria
from more detailed modeling of evolutionary dynamics (19).]

Typically, mixed strategies can be evolutionarily stable. How-
ever, in games like ours with asymmetric roles, the ESS condi-
tions become more restrictive and preclude this possibility. Here,
a strategy pair (T ,V ) is an ESS iff:

πT (V ) > πT ′(V ) for all T ′ 6= T , and [S2]

πV (T ) > πV ′(T ) for all V ′ 6= V [S3]

In other words, for a strategy pair (T ,V ) to be an ESS in our
game, the equilibrium thief strategy T must be a strict best
response to V , and the equilibrium victim strategy V must be a
strict best response to T .

To see why this is true, suppose that there exists a strategy pair
(T ,V ) which satisfies the conditions in Eqs. S2 and S3. Because
payoffs are additive across roles [i.e., π(T ,V )(T ,V )=πT (V )+
πV (T ) and π(T ′,V ′)(T ,V )=πT ′(V ) + πV ′(T )], the top con-
dition in Eq. S1 is automatically satisfied, and the strategy
pair is an ESS. Hence, the conditions in Eqs. S2 and S3 are
sufficient for (T ,V ) to be an ESS. Moreover, suppose that
for a strategy pair (T ,V ), there exists another thief strat-
egy T ′ such that πT (V )≤πT ′(V ). Then, crucially, (T ,V )
cannot resist invasion from the mutant strategy (T ′,V ). (If
the mutant thief strategy T ′ is a strictly better response
than the current strategy T—i.e., πT (V )<πT ′(V )—then
π(T ,V )(T ,V )<π(T ′,V )(T ,V ) and both conditions in Eq. S1
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fail automatically. If the two earn an equal payoff—i.e., πT (V )=
πT ′(V )—then π(T ,V )(T ,V )=π(T ′,V )(T ,V ), so we must
check the bottom condition in 1. In this case, (T ′,V ) can always
neutrally invade, because π(T ,V )(T

′,V )=π(T ′,V )(T
′,V ); the

bottom condition in Eq. S1 fails.) Hence, a strategy pair which
fails the condition in Eq. S2 cannot be an ESS. An identical argu-
ment shows that a strategy pair which fails the condition in Eq.
S3 cannot be an ESS. Thus, the conditions in Eqs. S2 and S3 are
both necessary and sufficient for a strategy pair to be an ESS in
our game.

In summary, the fact that a mutant can introduce a novel half
of the strategy pair (e.g., introduce T ′) but retain the other half
(e.g., retain V ) makes the conditions in 1 impossible to satisfy—
unless both halves of the strategy pair are strict best responses to
each other.

Why is this relevant to mixed strategies? A mixed strategy can-
not be a strict best response. (For a mixed strategy to be a best
response, all its component pure strategies must earn an equal
payoff; otherwise, a strategy which puts more weight on the bet-
ter pure strategies will be a better response. However, this fact
precludes the mixed strategy from being a strict best response,
because all other mixtures perform equally well.) Hence, in our
game, a mixed strategy cannot be an ESS.

The absence of stable mixed strategies is a problem, because
without population diversity in equilibrium, flexibility—and thus
punishment itself—can never be stable. [In fact, in the basic
steal/punish game, there is no ESS—or, if you included some
fixed cost of learning, the only ESS would be (AS ,NP).] More-
over, actual ancestral populations were probably consistently
diverse. We can illuminate the costs and benefits of flexibility,
and capture an important feature of ancestral populations, by
explicitly modeling this baseline level of population diversity.
Epsilon Game. To accomplish this, we define a second-order
game parameterized by a value ε, which we denote the epsilon
game. In the epsilon game, the set of thief strategies is τε=
{ASε,NSε,FSε}, and the set of victim strategies is φε=
{APε,NPε,FPε}. A pure strategy sε in the epsilon game is
equivalent to a mixed strategy in the basic game that plays s
with probability 1− ε and each other strategy with probability
ε
2

. Agents can also play mixed strategies in the epsilon game. For
example, a mixed strategy in the epsilon game of 1

2
sε and 1

2
rε is

equivalent to a mixed strategy in the basic game that plays s and
r each with probability 1

2
∗ (1− ε) + 1

2
∗ ε

2
= 1

2
(1− ε

2
), and the

other strategy with probability ε
2

.
By playing pure and mixed strategies in the epsilon game,

agents can play the equivalent of any mixed strategy in the
basic game, with one constraint: The fraction of behavior asso-
ciated with any basic pure strategy cannot fall below ε

2
. Thus, the

epsilon game captures the notion of permanent population diver-
sity. If ε=0, it reduces to the basic game. We therefore restrict
ε> 0. (We also restrict ε< 2/3; if not, the behavior associated
with one basic pure strategy can never be more prevalent than
the other strategies.)

When two epsilon strategies Tε and Vε play each other, the
payoffs are complex and unwieldy. Fortunately, to determine
the ESS conditions, we do not need to work with these payoffs.
(Tε,Vε) is an ESS when Tε outcompetes all other epsilon thief
strategies against opponent Vε (and mutatis mutandis for the vic-
tim). However, Tε can only outcompete the other epsilon thief
strategies if the basic pure strategy on which it places most of its
weight—T—outcompetes the other basic pure strategies when
facing Vε. Formally:

∀T ′ 6=T : πTε(Vε)>πT ′
ε(Vε) ⇐⇒ πT (Vε)>πT ′(Vε) [S4]

For simplicity of exposition, we omit the proof of Eq. S4. It is eas-
ily shown by writing out the payoffs of the left-hand expression
and canceling/rearranging terms.

Using Eq. S4, we compute the conditions under which
each epsilon strategy outcompetes each other epsilon strat-
egy, against each opponent. The results are shown in Fig. S2.
Each arrow indicates the direction of selection guaranteed by
the associated parameter condition. For example, the horizon-
tal orange arrow in the upper left indicates that, when θ <
2(1−ε)
ε

rc:s , FPε always outcompetes APε when facing opponent
ASε. (Note that the NSε and NPε strategies are irrelevant to the
ESS conditions. Because NS and NP are weakly dominated in
the basic game, NSε and NPε cannot be part of ESS pairs, and
the NSε and NPε strategies can never outcompete other strate-
gies, or, if they can, the conditions under which they do so are
redundant with other conditions. Thus, we can ignore them in
our calculations. The one exception, described later, is the θ < 1
condition in the lower right corner of Fig. S2.)

To see how these conditions are derived, consider the horizon-
tal blue arrow in the lower left corner of Fig. S2. Using Eq. S4,
APε is guaranteed to outcompete FPε against FSε when:

πAPε(FSε) > πFPε(FSε)

⇐⇒ πAP (FSε) > πFP (FSε)

⇐⇒ (1− ε)πAP (FS) +
ε

2
πAP (AS) +

ε

2
πAP (NS) >

(1− ε)πFP (FS) +
ε

2
πFP (AS) +

ε

2
πFP (NS)

⇐⇒ (1− ε) ∗ 0 + ε

2
N (−s − c) +

ε

2
∗ 0 >

(1− ε)(−Nsθ) +
ε

2
(−Ns) +

ε

2
∗ 0

⇐⇒ ε

2
N (−s − c) > (1− ε)(−Nsθ) +

ε

2
(−Ns)

⇐⇒ − ε
2
c > −(1− ε)sθ

⇐⇒ θ >
ε

2(1− ε) rc:s

The other conditions are derived the same way.
ESS Conditions in the Epsilon Game. We use the conditions in
Fig. S2 to derive the epsilon game’s ESS conditions. As in the
basic game, only a pair of pure strategies in the epsilon game
can be an ESS. Each pure strategy pair (i.e., each circle in Fig.
S2) is an ESS iff the conditions for both its incoming arrows are
satisfied. For instance, the familiar strategy pair (FSε,APε)—
the circle in the lower left corner of Fig. S2—is an ESS iff
θ >max ( ε

2(1−ε) rc:s , 1−
2(1−ε)
ε

rp:s). Similarly, the inverted strat-
egy pair (ASε,FPε)—the circle in the upper right corner of Fig.
S2—is an ESS iff θ <min( 2(1−ε)

ε
rc:s , 1 − ε

2(1−ε) rp:s). This pat-
tern supports the analysis in the main text: When flexible victims
are relatively vulnerable (θ is high), victims evolve to rigidly pun-
ish. However, when flexible thieves are relatively vulnerable (θ is
low), thieves evolve to rigidly steal.

Care must be taken here, however. There are only certain
ranges of the non-θ parameters in which the various θ conditions
in Fig. S2 are possible to satisfy. For instance, if rc:s >

2(1−ε)
ε

,
then ε

2(1−ε) rc:s > 1, and the condition for the blue horizontal
arrow can never be fulfilled. Thus, when the cost of punishing is
high enough, the familiar (FSε,APε) cannot be an equilibrium,
no matter how vulnerable the victim. These boundaries allow us
to explicitly demarcate the ranges of the non-θ parameters in
which our conclusions about the role of θ apply.

There are six different cases for the non-θ parameters, each
with different ESS results. (We show proofs only for the first
case.) Summarizing across all cases, the pattern presented in the
main text holds: When it is possible for a role to evolve flexibility
or rigidity, the outcome of selection depends on the relative vul-
nerability of the role’s flexible strategy. Vulnerable roles evolve
rigidity; nonvulnerable roles evolve flexibility.
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1. Suppose ε
2(1−ε) < rp:s + rc:s <

2(1−ε)
ε

.

This range is large. For example, if ε=0.05 and c= s , then this
captures all punishment magnitudes p that are up to 38 times as
strong as the value of the stolen good s . For retaliatory punish-
ment in real, long-term repeated relationships, the non-θ param-
eters likely fall into this range. This case is therefore the focus
of the main text. In this case, when θ is high, victims evolve rigid
punishment; when θ is low, thieves evolve rigid theft; and when
θ is middling, both are ESSs. (As we will show, similar but subtly
different conclusions apply in the other cases.)

Formally, in this case:

(a) If θ > max
(

ε
2(1−ε) rc:s , 1−

2(1−ε)
ε

rp:s
)

and θ > min
(
1−

ε
2(1−ε) rp:s ,

2(1−ε)
ε

rc:s
)

, then the familiar (FSε,APε) is the
only ESS.

Proof. If θ > ε
2(1−ε) rc:s and θ > 1 − 2(1−ε)

ε
rp:s , then the con-

ditions for both incoming arrows to (FSε,APε) in Fig. S2 are
satisfied, and (FSε,APε) is an ESS. (Since rp:s + rc:s <

2(1−ε)
ε
⇒

rc:s <
2(1−ε)
ε
⇒ ε

2(1−ε) rc:s < 1, the first inequality is possible to

satisfy. Since p> s⇒ rp:s > 0⇒ 1 − 2(1−ε)
ε

rp:s < 1, the second
inequality is also possible to satisfy.) These conditions also guar-
antee that (ASε,APε) and (FSε,FPε) are not ESSs.

Moreover, if either θ > 1 − ε
2(1−ε) rp:s or θ > 2(1−ε)

ε
rc:s , then

one of the conditions for the incoming arrows to (ASε,FPε) is
not satisfied, and (ASε,FPε) cannot be an ESS. (Since p> s⇒
rp:s > 0⇒ 1− ε

2(1−ε) rp:s < 1, at least one of the inequalities is
always possible to satisfy.)

Finally, for reasons stated above, strategy pairs involving NS
or NP can never be ESSs. Thus, (FSε,APε) is the only ESS.

(b) If θ < max
(

ε
2(1− ε) rc:s , 1−

2(1−ε)
ε

rp:s
)

and θ < min
(
1−

ε
2(1−ε) rp:s ,

2(1−ε)
ε

rc:s
)

, then the paradoxical (ASε,FPε) is
the only ESS.

Proof. The same as above, with reversed inequalities.

(c) If θ > max( ε
2(1−ε) rc:s , 1−

2(1−ε)
ε

rp:s) but θ < min(1−
ε

2(1−ε) rp:s ,
2(1−ε)
ε

rc:s), then both (FSε,APε) and (ASε,FPε)

are ESSs.

Proof. By similar logic as above, these conditions would guar-
antee that both (FSε,APε) and (ASε,FPε) are ESSs, and that
no other strategy pairs are stable. All that’s left to show is that
the conditions can be simultaneously satisfied. In other words,
we must show that all of θ’s upper bounds are higher than all
of its lower bounds. There are two upper bounds and two lower
bounds, and thus four inequalities to check.

First, we must check that 2(1−ε)
ε

rc:s >
ε

2(1−ε) rc:s . This is guar-

anteed because ε< 2
3
⇒ 2(1−ε)

ε
> ε

2(1−ε) . Similar logic shows that

1− ε
2(1−ε) rp:s > 1− 2(1−ε)

ε
rp:s .

Then, we must check that 2(1−ε)
ε

rc:s > 1− 2(1−ε)
ε

rp:s . After
rearranging, this is equivalent to ε

2(1−ε) < rp:s + rc:s , which is
assumed in this case.

Finally, we must check that 1− ε
2(1−ε) rp:s >

ε
2(1−ε) rc:s . This

is equivalent to rp:s + rc:s <
2(1−ε)
ε

, which is also assumed in
this case.

2. Suppose rp:s + rc:s <
ε

2(1−ε) .

Here, p and c are extremely small relative to the value of the
stolen good. This case patterns like case 1, except that the two
rival strategy pairs can no longer both be stable. Instead, a mid-
dling θ causes both roles to evolve rigidity.

(a) If θ > 1− 2(1−ε)
ε

rp:s , then (FSε,APε) is the only ESS.
(b) If θ < 2(1−ε)

ε
rc:s , then (ASε,FPε) is the only ESS.

(c) If 2(1−ε)
ε

rc:s <θ< 1− 2(1−ε)
ε

rp:s , then (ASε,APε) is the
only ESS.

3. Suppose 2(1−ε)
ε

< rp:s + rc:s but rp:s , rc:s < 2(1−ε)
ε

.
Here, p and c are slightly larger than case 1, but still bounded.

This case also patterns like case 1, except a middling θ causes
both roles to evolve flexibility.
(a) If θ > ε

2(1−ε) rc:s , then (FSε,APε) is the only ESS.
(b) If θ < 1− ε

2(1−ε) rp:s , then (ASε,FPε) is the only ESS.
(c) If ε

2(1−ε) rc:s <θ< 1− ε
2(1−ε) rp:s , then (FSε,FPε) is the only

ESS.
4. Suppose 2(1−ε)

ε
< rp:s but rc:s < 2(1−ε)

ε
.

Here, p is large and unbounded, but c is still bounded. This is
when cases start diverging more from case 1. In this case, rigid
theft cannot evolve. (Intuitively, when punishment is very strong,
the gains of rigid theft are not worth the inevitable episodes of
punishment.) The only question is whether victims evolve flexi-
bility or rigidity, which is determined by θ in the usual pattern.
(a) If θ > ε

2(1−ε) rc:s , then (FSε,APε) is the only ESS.
(b) If θ < ε

2(1−ε) rc:s , then (FSε,FPε) is the only ESS.

5. Suppose 2(1−ε)
ε

< rc:s but rp:s < 2(1−ε)
ε

.
Here, c is large and unbounded, but p is still bounded. In this

case, rigid punishment cannot evolve, and θ determines whether
thieves evolve flexibility or rigidity. One hiccup here is that, if
θ=1, there is no ESS because (FSε,FPε) has identical payoffs
to (FSε,NPε). This is the one case where the “never” strategies
can affect selection.
(a) If 1>θ> 1− ε

2(1−ε) rp:s , then (FSε,FPε) is the only ESS.
(b) If θ < 1− ε

2(1−ε) rp:s , then (ASε,FPε) is the only ESS.
(c) If θ=1, there is no ESS.

6. Suppose 2(1−ε)
ε

< rp:s , rc:s .
Here, both p and c are large and unbounded. In this case,

rigidity cannot evolve, and the only ESS is (FSε,FPε).
The Focal Case. Let’s return to case 1, the focus of our analy-
sis. This is the case in which ε

2(1−ε) < rp:s + rc:s <
2(1−ε)
ε

—or, if
ε=0.05, 1

38
< rp:s + rc:s < 38. Suppose we simplify further, and

assume (without much loss of generality) that rp:s and rc:s (and
not just their sum) are both greater than ε

2(1−ε) , e.g., 1
38

.
Then, the ESS conditions become simple. If θ > 1− ε

2(1−ε) rp:s ,
then the familiar (FSε,APε) is the only ESS. If θ < ε

2(1−ε) rc:s ,
then the inverted (ASε,FPε) is the only ESS. If θ is in between,
they are both ESSs.

The proof goes as follows. Since rp:s , rc:s >
ε

2(1−ε) , 1− 2(1−ε)
ε

rp:s < 0 and 2(1−ε)
ε

rc:s > 1. Hence, the conditions under which
(FSε,APε) is the only ESS (from case 1A) reduce toθ > ε

2(1−ε) rc:s

and θ > 1− ε
2(1−ε) rp:s . Moreover, rp:s + rc:s <

2(1−ε)
ε

implies
that 1− ε

2(1−ε) rp:s >
ε

2(1−ε) rc:s . Hence, the conditions reduce
further to θ > 1− ε

2(1−ε) rp:s—the condition given above. A simi-
lar argument proves that the conditions under which (ASε,FPε)
is the only ESS (from case 1B) reduce to θ < ε

2(1−ε) rc:s .
By fixing ε at a particular value, these conditions become linear

relationships between θ and rp:s or rc:s . Fig. 2 shows those condi-
tions at ε=0.05.

Fig. S3 shows the results at ε=0.01 and 0.2. The same pattern
holds; the bounds of the graph just expand or contract. The main
effect of ε is that when ε is lower, it is more likely that both strate-
gies will be ESSs (because the values of rp:s and rc:s required to
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reach the blue or orange regions become less plausible). When
ε is higher, it is more likely that either one strategy or the other
will be an ESS.
Risk-Dominance. In the focal case (case 1), there is a large set
of θ values in which both (FSε,APε) and (ASε,FPε) are ESSs.
To adjudicate between these equilibria, we turn to the notion of
risk-dominance.

Risk-dominance is an equilibrium selection concept with a
number of interpretations. On a nonevolutionary view, one equi-
librium risk-dominates the other if it follows from a larger swath
of players’ beliefs about their opponent (18). More relevant to
our purpose, risk-dominant equilibria are the unique outcome
of a variety of stochastic evolutionary processes (21). We there-
fore derive the conditions under which each equilibrium is risk-
dominant (within the parameter range of case 1).

Risk-dominance, however, has only been linked to evolution-
ary processes (and is only generally analytically tractable) in the
case of 2× 2 games (40). We thus reduce the epsilon game used
in the ESS analysis to a 2× 2 game by making two simplify-
ing assumptions. First, we assume that the dominated strate-
gies NSε,NPε will not affect equilibrium selection, and we drop
them from the game. Second, we assume the game is genuinely
asymmetric: Each agent plays as either thief or victim, not both.
[Recall that, although the epsilon games could be conceptualized
as an asymmetric game between the thief and victim roles, it is
technically symmetric because each agent plays as both thief and
victim. This symmetry makes the number of strategies for each
player (after excluding NSε,NPε) 4, not 2. The second assump-
tion is therefore necessary.] Thus, in the 2× 2 game, the thief
can play either ASε or FSε, and the victim can play either APε or
FPε. The payoffs are derived directly from the epsilon game.

Following case 1, we assume that ε
2(1−ε) < rp:s + rc:s <

2(1−ε)
ε

and max
(

ε
2(1−ε) rc:s , 1−

2(1−ε)
ε

rp:s
)
<θ< min

(
1− ε

2(1−ε) rp:s ,

2(1−ε)
ε

rc:s
)

. Thus, (FSε,APε) and (ASε,FPε) are both strict
Nash equilibria, and one risk-dominates the other when the
product of its deviation losses is larger. Formally, (FSε,APε) is
risk-dominant in the 2× 2 game iff (18):

(πFSε(APε)− πASε(APε)) ∗ (πAPε(FSε)− πFPε(FSε)) >

(πASε(FPε)− πFSε(FPε)) ∗ (πFPε(ASε)− πAPε(ASε))

Otherwise, (ASε,FPε) is risk-dominant.
When two epsilon strategies meet, the payoffs are complex and

unwieldy. Fortunately, as in the ESS derivation, we can reduce
this complexity. For any two epsilon thief strategies Tε,T ′ε and
any epsilon victim strategy Vε:

πTε(Vε)− πT ′
ε(Vε) =

(
1− 3

2
ε

)
(πT (Vε)− πT ′(Vε)) [S5]

The proof, which we omit here, comes simply from canceling
and rearranging terms. Since ε< 2

3
⇒ 1− 3

2
ε> 0, we can simplify

the risk-dominance condition by substituting using Eq. S5 and
dividing out the common 1− 3

2
ε terms. Thus, the risk-dominance

condition becomes:

(πFS (APε)− πAS (APε)) ∗ (πAP (FSε)− πFP (FSε)) >

(πAS (FPε)− πFS (FPε)) ∗ (πFP (ASε)− πAP (ASε))

Substituting the payoffs (derived from the epsilon game),
(FSε,APε) is risk-dominant iff:(

Ns
ε

2
(1 + θ)−Ns +Np(1− ε)

)
∗
(
Ns

(
θ − εθ + ε

2

)
−N (s + c)

ε

2

)
>

(
Ns −Np

ε

2
−Ns(θ − εθ + ε

2
)
)
∗
(
N (s + c)(1− ε)

−Ns
( ε
2
θ − ε+ 1

))
⇐⇒

(
s
( ε
2
θ +

ε

2
− 1

)
+ p(1− ε)

)
∗
(
sθ(1− ε)− c

ε

2

)
>(

s
(
θε− θ − ε

2
+ 1

)
− p

ε

2

)
∗
(
c(1− ε)− sθ

ε

2

)
After expanding terms, canceling, and rearranging, this becomes:

s2θ

(
2ε− 3

4
ε2 − 1

)
− spθ

(
2ε− 3

4
ε2 − 1

)
−sc(1− θ)

(
2ε− 3

4
ε2 − 1

)
> 0

⇐⇒
(
2ε− 3

4
ε2 − 1

)
(θ(s − p) + (1− θ)c) > 0

Since 2ε− 3
4
ε2− 1= 1

4
ε2− (1− ε)2 and ε< 2

3
⇒ 1− ε> ε

2
,

2ε− 3
4
ε2− 1< 0. Thus, the above expression is equivalent to:

θ(s − p) + (1− θ)c < 0

⇐⇒ θ >
c

c + (p − s)

⇐⇒ θ >
rc:s

rc:s + rp:s
.

This is the risk-dominance condition presented in the main text.
Consistent with the pattern in the ESS conditions, agents will
converge on flexible theft/rigid punishment when θ is high, and
rigid theft/flexible punishment when θ is low. Notably, this result
is independent of the value of ε (as long as 0<ε< 2

3
).

One wrinkle in this analysis is that risk-dominance has been
linked to evolutionary outcomes most clearly in the context
of symmetric games (40). In asymmetric games (like our 2× 2
game), stochastic evolutionary processes have only been shown
to select risk-dominant equilibria under extra assumptions, which
we do not engage with here (40, 41). We acknowledge this weak-
ness, and supplement the risk-dominance analysis of the 2× 2
game with the Moran process simulations.

1.3 Moran Process Simulations. The details of our Moran simula-
tions are described in the main text. Here, we fill in two details:
the expanded strategy space, and the parameter values.
Expanded Strategy Space. The Moran simulations were con-
ducted on a variant of the steal/punish game that differed from
the epsilon game in two respects. First, it used the basic strate-
gies (AS , NS , etc.) and not the epsilon strategies (ASε, NSε,
etc.). We did this because the Moran process offers a natu-
ral alternative implementation of population diversity: a muta-
tion rate µ. We used µ in place of stipulating epsilon strate-
gies to show that our pattern of results was robust to alternative
assumptions.

Second, to show that our results were robust to an expansion
of the strategy space, we included two more strategies for each
role. For the thief, we added “steal after punishment” and “steal
after nonpunishment,” which stole only if the victim (didn’t) pun-
ish on the prior round. For the victim, we added “always punish
anything,” which punished no matter what action the thief took
on the prior round, and “punish after nontheft,” which punished
only if the victim didn’t steal on the prior round. This expanded
strategy space thus included every reactive inflexible strategy,
where agents can condition their move on their opponents’ prior
move (23), plus the flexible strategies.

The payoffs for this expanded game are shown in Fig. S4. The
matches between strategies which both condition on the oppo-
nent’s previous move have ambiguous results: The agents can
settle into one of two possible action cycles. To derive payoffs
for these matches, we average the payoffs from the two possible
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cycles. (This approach is compatible with the view that agents
have “trembling hands” and thus alternate between the cycles.)
Also, when “steal after nonpunishment” faces “flexibly punish”
(FP), the optimal rigid strategy for FP to adopt depends on the
parameter settings. We assume that FP picks the better of the
two options.
Parameters. For the simulation in Fig. 3, we used the parameters
in Table S1. We then systematically varied the nonpayoff param-
eters to ensure that our results were robust and to understand
how our result was affected by parameter variation.

We focus on two crucial parameters: the selection intensity w
and mutation rate µ. Fig. S5A shows the result of simulations
with different selection intensities; Fig. S5B shows the result
of simulations with different mutation rates. Fig. S5C shows
an additional simulation in which we randomly sampled w and
µ for each match from the ranges Uniform( 1

10,000 ,
1

100
) and

Uniform(0, 2
3
), respectively. (To interpret the selection intensity

magnitudes, note that fitness scores are on the order of∼10,000.)
In most cases, the results were qualitatively identical. The only

difference arises when the selection intensity is low (w = 1
10,000 ).

Here, when θ is low, the population often fails to converge,
and instead oscillates between (AS ,FP) (the predicted equilib-
rium) and (AS ,NP). This effect occurs because, when θ is low,
(AS ,FP) earns only a slightly higher payoff than (AS ,NP)—
and the low selection intensity prevents it from consistently out-
competing (AS ,NP).

This effect is not predicted by our ESS analysis, but it
is relatively inconsequential. (AS ,FP) and (AS ,NP) lead to
extremely similar behavioral patterns: Thieves always steal, and
victims either never punish or quickly learn to stop punishing.
The general conclusion still holds: The role that is relatively
vulnerable when flexible will evolve rigidity to compensate. (A
similar effect occurs in the RL simulations; see Effects of Costly
Learning Time.)

2. RL Simulations
Our RL simulations are described in the main text. Here, we pro-
vide details about the setup and results of the simulations.

2.1 Outcome of Flexible Thief Versus Flexible Victim.
Background. In Learning Dynamics for RL Agents, we argued
that, when a flexible thief faces a flexible victim, the outcome
is typically that the thief learns to steal and the victim learns to
give up on punishing (i.e., θ is typically high). This effect, at least
in the parameter space we chose, was due to punishment’s costs.

Here, we expand on this argument. Model-free RL agents
attempt to estimate the value of stealing/punishing by aver-
aging the total reward received after taking the action in the
past. (Recall that, in RL algorithms, the value of an action is
the expected sum of future reward conditional on performing
the action.) The value estimate thus has two components, one
short-term and one long-term. The short-term component is the
immediate reward obtained from taking the action. The long-
term component is the expected (time-discounted) sum of future
rewards, conditional on being in the subsequent state to which
the action leads. (In words, estimating the long-term component
is akin to answering questions like: Will stealing now allow me to
steal in the future? Will punishing now prevent me being stolen
from in the future? Or, in MDP terms, what is the value of the
state to which I transition after stealing/punishing?). For both
the thief and the victim, the long-term component will ultimately
come to dominate the value estimates of stealing/punishing.

However, because the long-term component is noisy (it
depends on what your opponent does) and takes time to esti-
mate, initial value estimates will be dominated primarily by the
short-term component. Since punishment is immediately costly
(and theft immediately beneficial), victims will initially dislike

punishing, and thieves will initially like stealing. This reflects the
influence of the short-term element for each.

In stationary environments, this initial shortsightedness
wouldn’t be a problem; a well-designed RL algorithm will even-
tually estimate the true values associated with actions in the opti-
mal policy. However, in a competitive multiagent environment
where both agents are flexible, an agent’s initial estimate influ-
ences the behavior of its opponent. The fact that victims ini-
tially dislike punishing makes thieves like stealing more, because
they experience fewer negative consequences of theft. In turn,
the thieves’ increased preference for theft will make victims
dislike punishing even more, because it appears less and less
useful. And this makes thieves prefer stealing even more, etc.
In this way, the victim’s initial preference against punishment
(and the thief’s initial preference for theft) initiates a sequence
which results in the self-reinforcing equilibrium of theft and no
punishment.

All three payoffs influence this process. The thief’s initial pref-
erence for theft is determined by a combination of s and p. The
victim’s initial preference against punishing is determined by c.
When s is high enough and p is low enough, c doesn’t matter; the
thief’s initial preference for theft is strong enough to guarantee
convergence to the theft/no punishment equilibrium.

For the sake of exposition, however, we chose a payoff space
(s =5, p=15) in which c determines the outcome. Here, when
c is high, the victim’s initial dispreference for punishing sends
the pair of agents into a spiral toward the theft/no punishment
equilibrium. However, when c is trivial and the victim has no ini-
tial preference, the agents instead converge to the inverted equi-
librium in which the victim learns to punish theft and the thief
learns to desist from stealing.

Why, you might ask, do agents in the low-cost condition con-
sistently converge to the inverted equilibrium? The victim has no
initial preference against punishment, but, it seems, the thief still
has an initial preference for stealing. By our logic, this preference
should be sufficient to tip the scales toward the theft/no punish-
ment equilibrium—even when punishment’s costs are trivial.

The answer is that the thief does not actually always have an
initial preference for theft. Suppose that, in the beginning of the
game, the RL victim punishes ∼50% of the time. (In the low-
cost condition, this assumption is approximately accurate.) Then,
the thief’s initial estimate of the value of stealing will be s − 1

2
p,

or, with our payoffs, −2.5. By our logic, then, the outcome of
the game should depend on whether the victim’s initial estimate
of punishment’s value—determined by c—is stronger or weaker
than −2.5. This is, roughly, what we find (Fig. 4A).
Parameters. For the simulation in Fig. 4A, we sampled s, c, p
from the distributions in Table S1, and used the RL param-
eters in Table S2. We also ran a version with randomly sam-
pled parameters, with α from Uniform(0.05, 0.25), β from
Uniform(10, 100), and γ from Uniform(0.75, 0.99). The results
were qualitatively identical.

2.2 Combined Evolution + RL Simulations.
Modeling Assumptions. When embedding the RL agents in our
evolutionary simulation, we make two common assumptions.
First, as a baseline, we set the agents’ reward function equal to
the objective payoffs of the game. For example, since s =5, an
RL thief experiences a reward of 5 for stealing. In this way, RL
agents learn to choose payoff-maximizing actions (26–28). (We
then allow evolution to modify this reward function by introduc-
ing subjective biases, as described in the main text and below.)

Second, we assume that agents’ fitness is proportional to suc-
cess in the game (i.e., we set the fitness function equal to the pay-
off function). In this way, evolution produces agents that choose
payoff-maximizing actions (17, 19).

Combining these assumptions, the RL agents’ baseline reward
function is equal to the fitness function. In other words, the
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agents possess a proximate learning mechanism that seeks to
maximize ultimate outcomes.

Is it plausible to assume that agents directly “perceive” fit-
ness in this way? There are two justifications for this assumption.
The first is that evolution has likely already prepared a reward
function that closely approximates the fitness consequences of
many outcomes. For example, if the thief steals food and eats
it, we assume that on average the reward of eating that food is
a proportional representation of the food’s contribution to fit-
ness. This is not because the agent perceives fitness, but because
natural selection would tend to fine-tuned the rewards of vari-
ous foods (and other experiences) to approximate their relative
fitness consequences.

However, this logic clearly does not apply to all outcomes—
for example, the money that participants earn in our experiment.
(In other words, we did not evolve to find money rewarding).
Here, the justification is as follows. The reason that people value
money is because they have learned that money leads to other
primary rewards specified by natural selection: food, warmth,
social status, and so on. [In the framework of RL, the value
of money—and other “secondary” rewards—converges precisely
to the expected sum of future rewards conditional on receiving
that money (25).] We have already argued that those primary
rewards have evolved to be rewarding in lieu of their fitness
consequences. If an outcome like winning money is valuable in
proportion to the primary rewards it produces, and the primary
rewards have evolved to be rewarding in proportion to the fit-
ness consequences they produce, then, by transitivity, money is
also rewarding in proportion to its fitness consequences.

This simplifying assumption is consistent with prior investiga-
tions of the evolutionary dynamics of RL systems (30). The pur-
pose of our investigation, of course, is to understand when evolu-
tion will deviate from this sensible baseline by imposing further
“biased” rewards, such as a taste for retribution.
Reward Function Biases. Each genotype in the combined evolu-
tion and learning simulations was defined by a numerical bias
that changed the subjective reward the agent received from per-
forming its action (i.e., stealing or punishing theft). The magni-
tude of the numerical bias was always the smallest integer nec-
essary to guarantee that the appropriate behavior would receive
the greatest value estimate.

The three genotypes for the thief had steal biases: +11 (cor-
responding to AS), −6 (NS), and 0 (FS). Recall that the pay-
offs for these simulations were set to: s =5, p=15, and c varies
between 0.1 and 10. The value +11 was the lowest integer large
enough, with our payoffs, to make the experience of theft worth
the cost of being punished (s − p=−10, requiring a steal bias
of +11 to overcome it), thereby motivating the agent to always
steal. The value −6 was the least negative integer necessary
to make the experience of theft consistently negative (because
s =5), thereby instantiating NS. And an agent with 0 would
learn to steal iff it wasn’t being consistently punished for theft,
instantiating FS.

The three punishment biases were: +11 (corresponding to
AP), −52 (NP), and 0 (FP). The value +11 was the lowest integer
large enough to make inflicting punishment rewarding (because
c could reach as high as 10), and −52 was the least negative
integer necessary to make inflicting punishment never worth-
while, even when it would have prevented future theft (because
the long-term benefit of preventing indefinite future theft in
our MDP is s

1−γ2 —or, with our parameters s =5 and γ= .95,
around 51).
Parameters. For the simulation in Fig. 4B, we used the Moran
parameters in Table S1, but with fixed s =5 and p=15. We used
the RL parameters in Table S2.

To ensure that our results were robust, we systematically var-
ied w and µ; the results are shown in Fig. S6 A and B. Fig. S6C

shows a version with randomly sampled learning parameters,
with α from Uniform(0.05, 0.25) and β from Uniform(10, 100).
(We kept γ fixed because it is needed to determine the reward
function biases.)
Effects of Costly Learning Time. In all cases, the results were qual-
itatively similar. When the cost of punishment is high, people
evolve an intrinsic reward for punishment; when the cost is high,
people evolve an intrinsic reward for theft.

This method of presenting the results is intuitively clear, but
it obscures a subtle complication. The equilibrium genotypes are
composed of both a theft bias and a punish bias. When the cost
of punishment is high, the population converges to the familiar
equilibrium: rigid punishment (i.e., intrinsic reward for punish-
ing) and flexible theft (no bias). However, when the cost is low,
the population doesn’t always converge to be inverted equilib-
rium of rigid theft and flexible punishment. Instead, for some
parameters, the population oscillates between rigid theft/flexible
punishment and rigid theft/no punishment (i.e., an intrinsic bias
against punishing).

This was not predicted by our evolutionary analysis. In the
evolutionary analysis, flexibly punish always outcompetes never
punish because it performs better against flexibly steal (when θ
is low, as it is here)—and equally well against always steal and
never steal. This latter result depends on a critical simplifying
assumption. As stated above, we assume that the time it takes
for a flexible agent to learn which strategy to adopt is negligible
compared with the length of the game, and thus omit the learn-
ing period from the payoffs of the flexible agent. In other words,
the evolutionary analysis assumes that there is no practical cost
to being a learning agent. (This omission allowed us to focus on
the strategic costs of flexibility.)

However, when simulating actual learning agents, there is such
a practical cost. RL agents go through an initial exploration
phase before settling into their preferred actions, and this explo-
ration comes at a small, but nonzero, cost. For example, when
facing a thief who always steals, it takes longer for a flexible RL
victim (no reward bias for/against punishment) to learn to stop
punishing than it does for a victim with a strong bias against
punishment.

Hence, against always steal and never steal, a victim with a
bias against punishing will have some advantage over a flexible
victim. This advantage is counterbalanced by the fact that a flex-
ible victim achieves a much higher payoff against the portion of
the population that plays flexibly steal. Because of the fluctuating
nature of stochastic selection in a finite population, the relative
advantage of the two strategies continually shifts, and the strate-
gies oscillate.

Despite this complication, the practical result is similar: When
the cost of punishment is low, people evolve an intrinsic bias for
theft, and punishment is absent in equilibrium (either because
flexible victims learn that it is useless or because victims are born
with an intrinsic bias against punishing). Hence, we present the
simple version in the main text.
Isolating the Effect of Learning Dynamics. The simulations
demonstrated that, in the payoff range we chose, the cost of pun-
ishment is a critical factor in determining the outcome of selec-
tion. However, exactly how it influences selection is ambiguous.
The cost could, as we suggest, influence selection via its effect on
the learning dynamics (altering the crucial outcome of flexible
thief vs. flexible victim). However, it could also influence selec-
tion simply by being a change in the payoff function.

To demonstrate that punishment’s cost influences selection via
the learning dynamics, and not just via a change in the objec-
tive payoffs, we ran a follow-up simulation in which we varied
the perceived cost of punishing while holding the objective cost
fixed. We fixed c=5 and systematically simulated agents that
perceived from as little as 10% of c, up to 200% of c. This
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manipulation affects the learning dynamics without directly
altering the fitness structure. The results were qualitatively simi-
lar to the previous simulations (Fig. S6D), suggesting that c influ-
ences selection via its effect on the learning dynamics.

3. Behavioral Experiment
Variable Payoffs. To demonstrate that our behavioral results
were not an artifact of the specific payoffs we used, we ran a
follow-up study that randomly varied the payoffs for each par-
ticipant. s and c were chosen from Uniform(1, 4), and p from
Uniform(s +1, s +4).

Thieves were sensitive to s , stealing more when the payoff was
higher (χ2(1)= 7.93, P < 0.01, η2G =0.02, 95% CI= [0, 0.10]). It
is unclear whether victims were sensitive to c. They punished less
when c was higher, but only when facing opponents who always
stole, and the trend was nonsignificant (χ2(1)= 3.78, p=0.052,
η2G =0.01, 95% CI = [0, 0.08]). They were, however, significantly
sensitive to p, punishing more when it was more effective (only
against opponents who always stole; χ2(1)= 5.6, p=0.02, η2G =
0.03, 95% CI = [0, 0.11]). This finding supports the notion that
people exhibit some flexibility in their punishment choices, but
the details are unclear (see Discussion). (Thieves were not sensi-
tive to c or p.)

Fig. S1. Payoffs in the basic game, for each pure thief strategy against each pure victim strategy.

Fig. S2. The relevant selection pressures in the epsilon steal/punish game. Each arrow shows the direction of selection under the stated condition. A strategy
pair is an ESS iff the conditions of all its incoming arrows are fulfilled. When the conditions for both blue arrows are fulfilled, (FSε,APε) is an ESS; likewise
for orange/(ASε, FPε), red/(FSε, FPε), and brown/(ASε,APε).

Crucially, however, our main result held (Fig. S7). In the
focal match against opponents who always stole/punished theft,
thieves quickly learned to stop stealing, while victims were rel-
atively inflexible when punishing. The interaction between role
and round was significant (χ2(1)= 25.0, P < 0.001, η2G =0.03,
95% CI = [0.011, 0.20]).

Effect Sizes. To report effect sizes, we ran a simplified version
of each analysis. For the predicted interaction of role X match
round, we dropped all rounds except the first and last. This
gave us a 2× 2 design (thief vs. victim and first round vs. last
round), allowing us to perform an ANOVA and extract the
interaction’s generalized eta-squared (a measure of the percent-
age of variance explained by the effect). Similarly, for the main
effects in the random-payoffs experiment reported in Variable
Payoffs, we collapsed across trials, obtaining an average choice
for each subject. We then performed an ANOVA on this sim-
plified dataset and extracted the main effect’s generalized eta-
squared.

For the purposes of determining significance, we still report
likelihood ratio tests over the mixed-effects models; but for effect
sizes, we report eta-squared. We use the R package MBESS to
compute 95% CIs (42).
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Fig. S3. ESS conditions for different values of ε. In the middle region between the orange and blue sections, both strategies are stable. (Note the changing
scale of the axes.)

Fig. S4. Payoffs in the expanded strategy space used in the Moran process simulations.
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Fig. S5. (A and B) Moran process simulations, across different selection intensities (A) and mutation rates (B). (C) We randomly sample both parameters for
each match, from the ranges Uniform( 1

10,000 , 1
100 ) and Uniform(0, 2

3 ), respectively.
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Fig. S6. (A and B) Combined evolutionary and RL simulations, across different selection intensities (A) and mutation rates (B). (C) We randomly sample the
learning parameters for each match, with α from Uniform(0.05, 0.25) and β from Uniform(10, 100). (D) We manipulate the perceived cost of punishing while
holding the actual cost constant, to demonstrate that our effect is due to the cost’s influence on the learning dynamics (Isolating the Effect of Learning
Dynamics). The x-axis scale is linear for all graphs. Prob., probability.
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Fig. S7. Results of the follow-up experiment with randomly varied payoffs for each participant. The graph depicts the percentage of participants who chose
to steal/punish against an opponent who always stole/punished, across 20 rounds.
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Table S1. Default parameters in the Moran process simulations

Parameter Description Value

s Value of stolen good Uniform(0, 10)
c Cost of punishment Uniform(0, 10)
p Damage inflicted by punishment Uniform(s, s + 20)
N No. of rounds per game 5,000
K No. of agents in population 100
w Selection intensity 1

1,000
µ Mutation rate 0.05

Table S2. Default parameters in the RL simulations

Parameter Description Value

α Learning rate 0.2
β Inverse temperature of softmax function 20
γ Discount rate 0.95
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