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The ecology of the microbiome:
Networks, competition, and stability
Katharine Z. Coyte,1,2* Jonas Schluter,1,2,3*† Kevin R. Foster1,2†

The human gut harbors a large and complex community of beneficial microbes that remain stable
over long periods.This stability is considered critical for good health but is poorly understood.
Here we develop a body of ecological theory to help us understand microbiome stability.
Although cooperating networks of microbes can be efficient, we find that they are often unstable.
Counterintuitively, this finding indicates that hosts can benefit frommicrobial competition when
this competition dampens cooperative networks and increases stability. More generally, stability is
promoted by limiting positive feedbacks and weakening ecological interactions.We have analyzed
hostmechanisms formaintaining stability—including immune suppression, spatial structuring, and
feeding of community members—and support our key predictions with recent data.

T
he human microbiome contains hundreds
of species and trillions of cells that reside
predominantly in the gastrointestinal tract
(1, 2). These microbes provide many health
benefits, including the breakdown of com-

plex molecules in food, protection from patho-
gens, and healthy immune development (3–6).
The gut microbiome is often noted for its ecolog-
ical stability. Different peoplemay carry different
microbial species, but any one individual tends to
carry the same key set of species for long periods
(6–8). This stability is considered critical for host
health and well-being, because it ensures that
beneficial symbionts and their associated functions
are maintained over time (9–12). Correspond-
ingly, major shifts in microbial community com-
position are often associated with ill health (4, 13).
Research into gut communities has been char-

acterized by a large volume of empirical work.
Nevertheless, we are far from a clear understand-
ing ofmicrobiome communities and, in particular,
what promotes or disrupts their stability. There
is a pressing need for complementary theory to
identify overarching principles and patterns for
the microbiome. Some progress has been made
through the use of individual-based models (14)
and other analyses of two-species communities (15).
However, themicrobiome containsmany diverse
species interacting with one another (16), which
makes the full system complex and challenging
to understand. The field of theoretical ecology
has a long history of using network models that
are specifically intended to deal with large and
complex communities (17, 18). Here we develop
ecological network theory to identify the gen-
eral principles underlying microbiome stability.
We then use these principles to identify and ana-
lyze candidate mechanisms that a host can use to
promote stability in its microbiome. Finally, we
show that our key predictions are supported by
recent data from the mammalian microbiome.

Seminal work by May suggests that species di-
versity can be problematic for community stability
(17, 19). However,May’s work focused on networks
where the types of interactions between species
are randomly distributed,meaning that +/+ (coop-
eration) and –/– (competition) interactions occur
with half the probability of +/– (exploitation) inter-
actions. Also, whereas ecological competition is
thought to be prevalent in natural microbial com-
munities (20), it is commonly assumed that the
functioning ofmicrobiome communities rests upon
species that engage in cooperativemetabolism (+/+)

andprovidehealth benefits for the host (3, 21–24).
There is a clear rationale for this assumption.
Competition between microbes—captured by the
number and magnitude of mutually negative in-
teractions in our models—is associated with both
antibiotic warfare (25, 26) and a reduction in the
cooperative secretions that promote community
productivity (27). Both have the potential to severe-
ly reduce the efficiency of any cooperative metab-
olism that benefits the host (3, 21–24, 28).However,
although intuitive, this argument neglects the po-
tential effects of cooperation or competition on the
ecological stability of microbiome communities.
To understand ecological stability in themicro-

biome, therefore, wemust consider the specific ef-
fects of cooperation and how cooperation interacts
with other community characteristics, such as mi-
crobiomediversity, to influence community dynam-
ics. To do this, we have developed a dedicated body
of theory based on Wigner’s semicircle law and
subsequent analyses (18, 29, 30). First, we derive a
general analytic stability criterion that captures all
potential community types, covering the full rangeof
possible interactions and species diversities [Fig. 1
and supplementary method 1 (31)]. We develop
our theory for unstructured ecological networks
because, unlike in plant-pollinator communities
or foodwebs (32, 33), there is no evidence of strong
structuring within microbial communities (16).
However, although no single structure type dom-
inates in these communities, our mathematics
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Fig. 1. Ecological theory and microbiota stability. (A) Ecological network theory captures networks of
microbial species that interact with themselves (–s) and other genotypes (aij). (B) Coupled ordinary differential
equations capture all possible combinations of connectivity, interaction types (e.g., cooperation, competition,
exploitation), and species numbers (S) covering any biologically feasible equilibrium microbiota. Xi, density of
species i; ri, growth rate of species i; t, time.Three sample networks are shown. (C) Communities that return to
their previousdensities after perturbation are classified as stable, those that return to theirequilibrium faster are
categorized as more stable, and those that continue to diverge from the equilibrium are considered
unstable (17, 18). (D) Linear stability analysis uses the eigenvalues’ real (Re) and imaginary (Im) parts, shown
plottedhere.The largest real part of the eigenvalues underlyinga communitydetermineswhether, and how fast,
the community will return after perturbation. If this quantity is negative, the community is stable;more negative
values indicate that the community returns to stability more quickly. The imaginary parts of the eigenvalues
predict the extent of oscillations in species densities during a return to equilibrium: Larger imaginary com-
ponents predict more frequent oscillations. Eigenvalues are shown for the three sample communities from
(B) (purple, brown, green), and our analytic bound for their localization (black ellipse). Our analysis also
derives one special eigenvalue location that, for some parameters, will lie outside of the ellipse (black dot).

RESEARCH | REPORTS

 o
n 

N
ov

em
be

r 
6,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 
 o

n 
N

ov
em

be
r 

6,
 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

 o
n 

N
ov

em
be

r 
6,

 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 
 o

n 
N

ov
em

be
r 

6,
 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/


concurrently analyzes all network arrangements
and therefore naturally capture biologically critical
network motifs, including chains of cross-feeding
metabolic exchanges between species (34). Further-
more, unstructured networks are amenable to
comprehensivemathematical analysis, whichmeans
we can simultaneously analyze the ecological stabil-
ity of all possible network permutations as a func-
tion of our focal parameters. Specifically, we can
account for any variation in the proportion of co-
operation (+/+), competition (–/–), exploitation
(+/–), commensalism (+/0), and amensalism (–/0)
in networkswith any combination of connectivity,
C, and species number, S [method 1 (31)]. Stability
is assessed from the network’s eigenvalues, which
give three measures of stability: (i) the probability
that the communitywill return to its previous state
after a small perturbation, (ii) the population dynam-
ics during this return, and (iii) how long the return
will take, which is a form of resilience (35) (Fig. 1).
We first show that May’s (17) destabilizing

effect of species diversity still holds in communi-
ties with any mixture of interaction types. From
purely cooperative networks to mixed-interaction
networks to purely competitive networks (fig. S1),
our model predicts that high species diversity
leads to unstable microbiome communities. How
though does altering the level of cooperation be-
tween species affect microbiome stability? We
find that gradually increasing only the propor-
tion of cooperative interactions within communi-
ties nearly always decreases the overall return
rate and the likelihood of stability [Fig. 2 and

method 1b (31)]. We confirm our analytic results
with numerical analyses [Fig. 2B, figs. S3 to S6,
and method 1f (31)]. These results contrast with
a recent analysis of macroscopic communities,
which predicts that ecological stability can bemax-
imized for an intermediate frequency of coop-
erative interactions (32). In the supplementary
materials, we show that our analytical model re-
capitulates these numerical simulations and
that the predictions rest on assumptions that suit
macroscopic communities but not themicrobiome
[method 1g (31) and figs. S4 to S9] (32, 36).
This method, known as local stability analysis,

has the benefits of being both extremely general
and able to analyze communities with large num-
bers of species. However, this approach is only
able to analyze whether viable communities are
stablewhen they are close to their equilibrium(37);
it provides no information on how communities
behave away from this equilibrium. We therefore
also develop a second new analysis, based on a
different method known as permanence analysis
(38) [method 2 (31)]. Permanence analysis is con-
sidered one of the most rigorous methods of
community analysis, but the numerical analysis of
permanencewas, until now, limited solely to pure-
ly competitive or exploitative communities. Therefore,
we expand traditional permanence methods here
to study the effects of cooperation. Although this
method is very different from local stability ana-
lysis, we find the sameprediction that cooperation
is destabilizing. However, as discussed in the sup-
plementary materials, positive feedbacks arising

from cooperative interactions can still constrain
this analysis such that it may underestimate the
number of permanent communities. Consequently,
wealsodevelopa thirdmethod—an individual-based
model—to evaluate the relationship between coop-
eration and ecological stability in amicrobial com-
munity [method 3 (31)]. Although it is less general
than theothermethods, our individual-basedmod-
el ismore explicit. It allowsus to follow thedynamics
of each species over time and to examine additional
factors, including explicit spatial structure that puts
an upper limit on the community size. This third
method again confirms our finding that cooper-
ation is destabilizing for the community (Fig. 2E).
The reason for the destabilizing effect of coop-

eration in our models is that cooperation causes
coupling between species and positive feedbacks.
This means that if, for example, one species de-
creases in abundance, it will tend to pull others
downwith it anddestabilize the system. It has been
hypothesized that cooperative and productive mi-
crobial communities are the reason for the marked
stability of the microbiome (23). However, even
though cooperationmeans that one species is help-
ing another to survive and replicate, and thusmight
facilitate colonization, this does not equate to sta-
bility, because cooperation can create dependency
and the potential formutual downfall. Under these
circumstances, therefore, our analyses suggest that
the host faces a trade-off: Though increased coop-
erationwithin communities is expected to promote
overall metabolic efficiency (3, 24, 25, 27), it comes
at the cost of decreasing ecological stability.
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Fig. 2. Cooperation reduces community stability. (A) Illustration of changing
the proportion of cooperative links in networks. Pm, proportion of cooperative in-
teractions. (B) Linear stability analysis (also see fig. S2). The plot at left shows
solutions for eigenvalue locations as a function of increasing cooperation (shown as
increasing redness).The largest value of the real components (x axis) determines
whether, and how fast, a return to equilibrium occurs (stability), whereas the
imaginarycomponents (yaxis)determine the frequencyofoscillations inpopulation
densities after perturbations (see Fig. 1).The solutions give the position of all eigen-
values in the form of an ellipse, with the exception of a single eigenvalue that
corresponds to the average rowsumof the interactionmatrix (representedbyadot
that may lie outside of the ellipse). Increasing cooperation increases the largest
eigenvalues; therefore, stability decreases. Solutions hold for any permutation of a
community network with a given parameter set [here S = 100, C = 0.7, –s = –1,

standarddeviations =0.05; seemethod 1b (31) forparametersweepsshowing that
cooperation is nearly always destabilizing]. Pc, proportion of competitive inter-
actions. Simulation results are plotted at right.This graph shows the proportion of
communities that are stable and confirms our analytic results. (C toE) The effect of
cooperation on community stability, shown with linear stability analysis [(C), also
shown in (B)], permanence analysis (D), and individual-based modeling (E). The
latter two methods are computationally expensive, which requires us to analyze
smaller networks than those studied with linear stability analysis (31). Parameters
shown here:S= 10,C=0.7,–s=–0.2, s =0.05 for 100 samples. Error bars indicate
SEM. (F) Dynamics of the individual-based model. Permanent communities
maintain all of their original species after a perturbation, even if species densities
do not return to their initial values. In nonpermanent communities, perturbations to
species densities will lead to the extinction of some or all species.
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Ourmodel predicts that ecological competition
improves microbiome stability. However, a nota-
ble feature of the mammalian microbiome is spe-
cies diversity, and we have seen that high species
numbers tend to be destabilizing (fig. S1). There-
fore, we investigated how the stabilizing effects
of ecological competition interact with the desta-
bilizing effects of increasing diversity. Specifically,
we explored whether a diverse and competitive
community leads to a stablemicrobiome.We again
turned to local stability analysis, as thismethod can
deal with communities containing many species
[Fig. 3A and method 1 (31)]. Although increasing
species numbers is a destabilizing process (fig. S1),
the concurrent increase in competition introduces
negative-feedback loops that have a stabilizing ef-
fect. We find a wide range of diversities for which
this stabilizing effect dominates the destabilizing
effect of increased species numbers (Fig. 3, B and
C, and fig. S10). Even though competitionmaydrive
inefficiencies, it dampens the destabilizing effects of
cooperation that can lead to the loss of community
members (Fig. 2F). The key is that the new inter-
actions from the introduction of additional spe-
cies are competitive (or exploitative) (fig. S11). The
additional species need not be other bacteria;
phages in microbial communities (39) have the po-
tential for effects comparable to those of the ex-
ploitative species in our model (fig. S11) (40).
Our analyses allow us to identify key principles

(41) that are important for a stable microbiome

community. In particular, the stabilizing effect of
competition reflects the more general principle
that dampening of positive-feedback loops pro-
motes stability. Can we use such principles to
better understand host biology and, more specif-
ically, how a host should interact with its sym-
bionts? To answer this, we develop a further set of
analyses dedicated to clarifying how key features
of host biology influence ecological stability. A clear
candidate for promoting stability in the gut is the
immune system. During dysbiosis and infection,
adaptive immunity is thought to help reestablish
ahealthymicrobiomeby suppressing specieswhose
abundance is causing harm (3–5, 23). We can add
such density-dependent regulation to our model
and find that it is indeed stabilizing. Moreover,
the reason this occurs is because immune regu-
lation, like competition, will prevent run-away
positive-feedback loops [method 1d (31)].
Dampening positive feedbacks is an important

route to stability. A second key principle affecting
stability in our models is the strength of inter-
actions between species. Processes that weaken
interactions between specieswill generally promote
stability, as these processes reduce the coupling
that drives instability. Redundancy can promote
stabilitywhen a few strong cooperative interactions
are replaced by severalweaker ones [method 1e (31)
and fig. S13]. But a key candidate mechanism by
which a host can actively weaken ecological inter-
actions is through the introduction of spatial struc-

ture (27, 42). In particular, introducing spatial
structure (e.g., patchy growthwith limitedmixing)
(fig. S14) between species is known to reduce the
strength of between-species interactions without
reducing interactionswithin a species (42). Imple-
menting this effect in ourmodels greatly improves
the potential for community stability (Fig. 4). We
predict, therefore, that a host can benefit from com-
partmentalizing specieswithin gut communities to
control interactions and limit the riskof extinctions.
Another candidate mechanism to influence

microbial interactions is host epithelial feeding.
Nutrients are provided for symbionts from the
epithelial surface, especially during starvation pe-
riods, when lumen nutrient concentrations are
less abundant (43). Recent work has shown that
knockout mice lacking the ability to feed the mi-
crobiotawith fucose show a significantly decreased
community diversity (44). There is also the poten-
tial for some specificity in host feeding that occurs
through fucose residueswhose digestion relies on
specific enzymes (43, 45, 46). In the context of our
models, feeding is expected to promote the sta-
bility of communities, provided that such feeding
can preferentially weaken interactions between
cooperating species by, for example, providing an
alternative carbon source to that involved in mi-
crobial cross-feeding (Fig. 4B and fig. S12).
So far we have studied communities that are

intrinsically limited by their own interactions.
Feeding has the potential to alter this by causing
populations to grow until they are extrinsically
limited by the capacity of the host. Though high
symbiont population sizes might harm a host
for reasons unrelated to stability (47), we can
nevertheless use our individual-basedmodel to
examine the effect of this scenario on ecological
stability. Specifically, we ask what happens if
feeding, or any process that drives high intrinsic
growth rates, causes communities to expand until
they become extrinsically limited by the capacity
of the host environment. We find that such com-
munities are stable to further perturbations (Fig.
4C), even those that start with many cooperative
interactions. Therefore, the possession of strongly
growing communities that are extrinsically regu-
lated by the host is another potential route to eco-
logical stability. However, after expansion, these
communities are much less cooperative, because
the increase in population densities means that
species are now competing for the limited capac-
ity of the host (Fig. 4C). Once again, we find that
ecological stability is associated with competition.
Although the stability and composition of gut

microbial communities are considered central to
the benefits they provide to a host (9–12), we lack a
clear understanding of what underlies the stability
of microbiome communities. Here we have devel-
oped a body of theory to identify key principles un-
derlying microbiome stability. We have also shown
how these principles allow us to reinterpret and
predict key features of host biology, including
immune suppression, the potential for spatial
structuring, and host feeding ofmicrobes. Can we
use existing data to test whether the principles
we have identified are indeed at work in real com-
munities? Currently, few data are available on
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Fig. 3. Introduction of
species can stabilize a
network of cooperators.
(A) Illustration of increasing
species number and compe-
tition (green) in a network
that originally contained only
cooperating species (red).
(B) Eigenvalue distribution
changes after the addition of
competitor species to 100
cooperating species
(C=0.7,–s=–1.75, s =0.05).
As in Figs. 1 and 2, the
eigenvalues are contained
within ellipses,except for one
eigenvalue that may lie
outside of the ellipse. Cru-
cially, this latter eigenvalue
is reduced when we add
competitive species (i.e., the
dot moves left), which
results in a stabilizing effect.
However, the ellipse
containingall othereigenvalues
becomes wider with addi-
tional species, leading to a
reduction in stability once the
ellipse contains the rightmost
eigenvalue (i.e., once the dotmoves inside the ellipse). (C) Ecological stability as a function of the number of
added competing species (solid black line). Competitors are initially stabilizing because they reduce the
proportion of cooperative interactions (Pm, blue line). Eventually, however, adding competitors begins to have
a destabilizing effect, which corresponds to the widening of the ellipse in (B).This behavior holds for a wide
range of self-regulation strengths (–s, dotted black lines). Note that we do not apply permanence analysis or
the individual-based model here, as these analyses are limited to low species diversities (31).
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ecological interactions within the microbiome.
Nevertheless, we can validate our approach and
test our key predictions with recently published
data on interactions in the mouse gut microbiome
(16). Stein et al. used time-resolved metagenom-
ics and machine learning to infer the interactions
within communities. In Fig. 4D, we use these data
to parameterize our generalmodel and show that
it correctly predicts stabilitywithin a real commun-
ity. In addition, we plot the distribution of ecol-
ogical interactions within the mouse microbiome.
As we predicted, ecological interactions tend to be
both noncooperative and weak [Fig. 4D and
method 4 (31)].
In conclusion, microbiome communities con-

sist of many interacting species, making it diffi-
cult for a host to exercise control over each species
individually. However, our work emphasizes that
hosts can act as ecosystemengineers thatmanipu-
late general, system-wideproperties of theirmicro-
bial communities to their benefit. Identifying
when and how hosts alter their symbionts’ eco-
logy will be important if we are to comprehend
the dynamics of microbiome communities. More
generally, although there is a vast and rapidly
growing body of data on the mammalian micro-
biome, little attentionhas beenpaid to the strength
or sign of ecological interactions. To understand
and manipulate the microbiome, we will need to
dissect and engineer the interactions within these
critical communities.
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Fig. 4. Host strategies to promoteecological stability. (A) Spatial structure
promotes ecological stability in linear stability analysis (LAS) (left), perma-
nence analysis (PA) (middle), and an individual-based model (IbM) (right). (B)
Targeted feeding. Host-supplied nutrients that weaken cooperative interac-
tions promote ecological stability.We observed an exception for which targeted
feedingmay destabilizemore competitive communities in the IbM (Pm = 0.25),
but the effect is weak. (C) Nontargeted feeding may stabilize communities
when it increases the growth rates of all species such that they become limited
by the host’s capacity (left). However, limited space means that most pre-
viously cooperative species become competitors. Competition is demonstra-
ted by removing one species from a community and observing increased

densities for most remaining species (middle) (Pm = 0.9). F, feeding; NF, no
feeding. IbM time-series plots show that feeding can stabilize communities
upon species removal (right). (D) (Left) Empirical interaction parameters
(mouse microbiome communities) (16) confirm our predictions: Most inter-
actions are weak (less than self-interaction, s) and predominantly competitive
or exploitative, with a small set of cooperative interactions [experimental valida-
tion in (31)]. (Right) Our general analytical model predicts stability in a real
community, using community parameters from the mouse data set (S, C, Pm,
Pc, s, s). In (A) to (C), LAS:S=300,C=0.7,–s=–1, s =0.05; PAand IbM:S= 10,
–s = –0.2; error bars indicate SEM. PA and IbM are computationally expensive
and require smaller communities.
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